Received 23 February 2005 Accepted 24 February 2005

Online 11 March 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

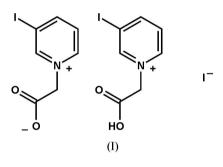
Peter G. Jones,* Berta Cots Carrasquer and Eva-Maria Zerbe

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

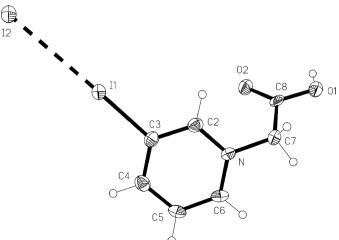
Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study T = 133 K Mean σ (C–C) = 0.005 Å Disorder in main residue R factor = 0.029 wR factor = 0.052 Data-to-parameter ratio = 24.3


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Carboxymethyl-3-iodo-1-pyridinium-iodide-(3-iodo-1-pyridinio)acetate (1/1/1)


The title compound, $C_7H_7I_2NO_2^+ \cdot I^- \cdot C_7H_6I_2NO_2$, crystallizes with $Z' = \frac{1}{2}$; the iodide anion lies on a twofold axis, and in the cation/zwitterion adduct the acidic H atom is disordered over an inversion centre. The residues are linked to form zigzag chains in the overall direction [103] by $I \cdot \cdot \cdot I$ interactions between anion and cation, and by classical $O-H \cdot \cdot \cdot O$ hydrogen bonds. Weak hydrogen bonds $C-H \cdot \cdot \cdot O$ link the chains to form layers parallel to (301).

Comment

We are interested in secondary bonding contacts (classical and 'weak' hydrogen bonds, and halogen-halogen contacts) in structures of pyridine derivatives. A brief summary of our relevant publications is given in Jones & Lozano (2004).

The title compound, (I), arose as an unexpected product from the reaction between 3-iodopyridine and iodoacetic acid; a simple adduct had been expected, but clearly the pyridine N atom, acting as a nucleophile, had displaced the iodide from iodoacetic acid. The compound is formally an adduct of the

Figure 1

The asymmetric unit of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 50% probability level. The Hatom radii are arbitrary.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

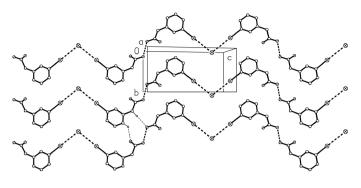


Figure 2

Packing diagram of the title compound with a view direction perpendicular to (301). H atoms have been omitted. Thick dashed lines indicate O-H···O hydrogen bonds and iodine-iodine interactions. Thin dashed lines indicate one of each type of 'weak' hydrogen bond (H6···O2 and $H7A \cdot \cdot \cdot O2$).

neutral zwitterion (3-iodo-1-pyridinio)acetate, the cation 1carboxymethyl-3-iodo-1-pyridinium, and iodide anion in a 1:1:1 ratio. The asymmetric unit is shown in Fig. 1. The iodide ion lies on a twofold axis $(\frac{1}{4}, y, \frac{1}{4})$, but there is only one independent 1-carboxymethyl-3-iodo-1-pyridinium moiety, linked to another *via* the inversion centre $(\frac{1}{2}, 0, 1)$; the acidic H atom is accordingly disordered over this centre. Dimensions of the 'carboxylic acid' group C8/O1/O2 should therefore be interpreted with caution, because they in fact represent a superposition of a carboxylate and a carboxylic acid group.

Within the asymmetric unit, the iodo substituent I1 of the pyridine ring and iodide anion I2 are linked by a short contact of 3.4443 (4) Å, with a C–I1···I2 angle of 175.99 (8)°. The carboxylate group is rotated with respect to the ring plane by an interplanar angle of 56.4 $(1)^{\circ}$. Dimensions of the pyridine system may be regarded as normal; a search of the Cambridge Structural Database (Version 5.26; Allen, 2002) revealed 97 hits for the pyridinioacetate system (including any ring substituents and all varieties of the carboxylate group), with 183 individual values and derived mean values of 1.470 (13) Å for the N-CH₂ bond length and 120.5 (1)° for the ring C-N-C bond angle.

The crystal packing (Fig. 2) involves two main types of contact. First, the iodide ion bridges two pyridine ring systems via an $I1 \cdots I2 \cdots I1^{i}$ grouping with an angle at I2 of 103.066 (13)°. Secondly, the carboxylate/carboxylic acid groups are linked by a classical hydrogen bond, with $O \cdot \cdot \cdot O =$ 2.474 (5) Å. The net effect is to form zigzag chains of residues in the overall direction [103] via the twofold axes $(\frac{1}{2} - x, y, y)$ $\frac{1}{2}-z$) and the inversion centres $(\frac{1}{2}, 0, 0)$ and $(0, 0, \frac{1}{2})$. Neighbouring chains are related by the *b* translation and linked by the 'weak' hydrogen bonds H6 \cdots O2 and H7A \cdots O1 (Table 2), and thus form layers parallel to (301). Layers are linked in the third dimension by the weak hydrogen bonds H5...O2, H2···I2 and H7B···I2.

Experimental

3-Iodopyridine (55.1 mg) and iodoacetic acid (50 mg, molar ratio 1:1) were dissolved in ethanol (5 ml). The combined solution was allowed to stand for several weeks. Small crystals of the title compound formed in poor yield.

Crystal data

$C_7H_7INO_2^+ \cdot I^- \cdot C_7H_6INO_2$	$D_x = 2.383 \text{ Mg m}^{-3}$
$M_r = 653.96$	Mo $K\alpha$ radiation
Monoclinic, $P2/n$	Cell parameters from 4228
a = 10.9984 (8) Å	reflections
b = 6.3486 (4) Å	$\theta = 2-30.5^{\circ}$
c = 13.2439 (12) Å	$\mu = 5.16 \text{ mm}^{-1}$
$\beta = 99.768 \ (4)^{\circ}$	T = 133 (2) K
$V = 911.34 (12) \text{ Å}^3$	Prism, colourless
Z = 2	0.11 \times 0.05 \times 0.05 mm

Data collection

2648 independent reflections
2049 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.042$
$\theta_{\rm max} = 30.0^{\circ}$
$h = -15 \rightarrow 15$
$k = -8 \rightarrow 8$
$l = -18 \rightarrow 18$

 $2\sigma(I)$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.029$	independent and constrained
$wR(F^2) = 0.052$	refinement
S = 0.95	$w = 1/[\sigma^2(F_o^2) + (0.0229P)^2]$
2648 reflections	where $P = (F_o^2 + 2F_c^2)/3$
109 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.92 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$

Table 1 Selected geometric parameters (Å, °).

I2-I1 ⁱ	3.4443 (4)	C6-N	1.349 (4)
C2-N C3-I1	1.356 (4) 2.112 (3)	N-C7	1.481 (4)
$\begin{array}{c} I1 {-} I2 {-} I1^{i} \\ C6 {-} N {-} C2 \end{array}$	103.066 (13) 121.5 (3)	C6-N-C7 C2-N-C7	119.5 (3) 119.0 (3)
C2-N-C7-C8	-57.8 (4)	N-C7-C8-O2	4.4 (4)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H01···O1 ⁱⁱ	0.83 (2)	1.73 (4)	2.474 (5)	150 (8)
$C7-H7A\cdots O1^{iii}$	0.99	2.50	3.451 (4)	162
$C5-H5\cdots O2^{iv}$	0.95	2.54	3.349 (4)	143
$C6-H6\cdots O2^{v}$	0.95	2.34	3.062 (4)	132
$C2-H2\cdots I2^{vi}$	0.95	3.26	3.960 (3)	132
$C7 - H7B \cdot \cdot \cdot I2^{vi}$	0.99	2.94	3.758 (3)	140

Symmetry codes: (ii) 1 - x, -y, 2 - z; (iii) 1 - x, 1 - y, 2 - z; (iv) $\frac{1}{2} - x, 1 + y, \frac{3}{2} - z$; (v) x, 1 + y, z; (vi) 1 - x, -y, 1 - z.

The half-occupied H-atom site bonded to nitrogen was identified in a difference synthesis and refined with a distance restraint of 0.84 (2) Å. Other H atoms were included using a riding model with fixed C-H bond lengths of 0.95 (pyridine) or 0.99 Å (methylene); $U_{\rm iso}({\rm H})$ values were fixed at 1.2 times the $U_{\rm eq}$ value of the parent C atom. Major features of residual electron density lie near the I atoms. Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

BC was supported by the Erasmus scheme. We thank Mr A. Weinkauf for technical assistance.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Jones, P. G. & Lozano, V. (2004). Acta Cryst. C60, 0876-0878.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.